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Abstract — The main difference in single objective and 
multi-objective optimization using particle swarm optimiza-
tion is how to define the guider to locate the global optimal 
and non-dominated solutions in corresponding optimization 
problems. In general multi-objective particle swarm optimiza-
tion, only one guider is selected, and, in order to reduce the 
non-dominated solution for more diversity in the external 
achieve, only crowding distance in objective spaces is consi-
dered. This paper presents a new approach of selecting multi-
guiders to lead a swarm toward a Pareto-front.  Aside from 
considering the crowding distance of solutions in objective 
spaces to maintain the diversity of solutions, the distance be-
tween them in variable spaces also taken into account. The 
proposed algorithm is compared with recent approaches of 
multi-objective optimizer in solving a multi-objective version 
of TEAM 22 benchmark optimization problem. 

I. INTRODUCTION 
In real world application, dealing with optimization 

problems involves optimizing multiple solutions together 
with considering many criteria and constraints are popular. 
Therefore, many multi-objective optimization (MO) algo-
rithms have been proposed. In recent years, particle swarm 
optimization (PSO) algorithm is widely applied in MOs, the 
PSO was known as the simple method in programming and 
high speed of convergence. However, the high speed of 
convergence of the global best version of PSO is often as-
sociated with a rapid loss of diversity during the optimiza-
tion process, leading to undesirable premature convergence. 
Thus, a new MO based on PSO should deal with the prema-
ture convergence and the convergence speed [1]. 

In order to overcome above problem, a new MOPSO 
algorithm is proposed, which is based on Multi-objective 
Gaussian PSO (G-MOPSO) [2] with further improved by 
using multi-guiders and cross-searching (MGC-MOPSO). 
To show the behavior of the proposed MGC-MOPSO com-
paring with G-MOPSO, both of them are tested on the mul-
ti-objective version of TEAM 22 using FEM analysis for 
calculating objective function and constraint function val-
ues.  

II. FUNDAMENTAL OF MGC-MOPSO 
In this algorithm, two guiders are chosen among the 

non-dominated solutions by using the crowding distance 
information. The effectiveness of the second guider is con-
trolled by the cross-searching factor to guide the swarm 
during searching process. Furthermore, to keep diversity of 
solutions, the distance of non-dominated solutions in varia-
ble spaces is also considered together with the crowding 
distance in objective spaces to remove non-dominated solu-

tions. The implementation of proposed MOPSO is based on 
the following steps: 

Step 1: Initialize a swarm of particles. 
- Generate NP particles with random velocity and position, 
and set the iteration counter t = 0. 

- Evaluate all objective function and constraint values. 
- Update non-dominated solutions and store in the external 
achieve A. 

- Calculate the crowding distance for all solutions in A. 
- Sort A in the descending order of crowding distance. 

Step 2: Update a new personal best position. 
- If current position of particle i-th dominates the previous 
its personal best position, update current position as a new 
personal best position, otherwise, do not update. 

- Randomly select a new personal best position between 
current position and previous personal best position, if 
they are not dominated by each other. 

Step 3: Update the guiders. 
- Randomly select the first guider g1 from the top 10% 
crowding distance of sorted A. 

- If g1 is an extreme solution, the second guider is not ne-
cessary to be considered. Otherwise, by considering the 
two non-dominated solutions beside the first guider in Pa-
reto-front, the bigger crowding distance among them is 
selected as the second guider g2 as shown in Fig. 1. 

Step 4: Update velocities and positions. 
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Fig. 1. Selection of two guiders 
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where, ω is initial weight, constants c1 and c2 are the accele-
ration factors, which are further improved by cognitive and 
social time-variant factors [2]. Variables Ud, Gd are ran-
dom numbers in [0,1]; however, Ud is the uniform distribu-
tion and Gd is Gaussian distribution. vi = [vi1, vi2, …, viD]T 
and xi = [xi1, xi2, …, xiD]T stand for velocity and position of 
i-th particle in D-dimension, respectively. pi = [pi1, pi2, …, 
piD]T represents the personal best position of i-th particle. gk 
= [gk1, gk2, …, gkD]T, k=1,2, are two guiders. Extreme factor 
χ is set to zero if g1 is extreme solution and 1 otherwise. 
The effectiveness of the second guider g2 is controlled by 
cross-searching factor α. In general, α is time-variant factor, 
which varies linearly from 0 to 1 depending on the iteration 
counter increasing from 0 to maximum number of iteration.  

Step 5: Evaluate objective function. 
- Mutation operator is applied to prevent premature conver-
gence due to existing local Pareto-fronts [3]. 
- Evaluate all objective function and constraint values. 

Step 6: Update non-dominated solutions. 
- The external achieve absorbs superior current non-
dominated solutions and eliminates inferior solutions.  

- While the number of solutions in A is bigger than expected 
solutions, then repeat the following process: 
+ Calculate the crowding distance for all members in A.  
+ Sort A in the descending order of crowding distance. 
+ Calculate the distance of the lower 10% of crowding 
distance in variable spaces; for i-th solution, the distance 
is presented as: 
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where, RS is number of non-dominated solutions at the 
lower 10% of crowding distance. |.| denotes the Euclidean 
distance in variable spaces. 
+ Calculate the threshold distance. 
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+ Remove the non-dominated solution which has dxi 
smaller than dth. If number of solutions is still bigger than 
limitation, dth will be increased as the following: 
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Step 7: Termination check. 
- Increase the iteration counter t = t+1. 
- If t reaches the maximum number of iteration, tmax, the 
algorithm will stop, otherwise go to Step 2.  

III. RESULTS AND CONCLUSION 

The multi-objective version of TEAM workshop prob-
lem 22 proposed in [4], is continuous, constrained, eight 
variables with two conflicting objectives: the stray field 

along two given lines and the achievement of a required 
stored energy, and two constraint functions are defined as: 
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where, the reference stored energy and stray field are 
Eref=180 MJ and Bnormal = 200μT, respectively. J1, B1 and J2, 
B2 are current density and magnetic flux density in inner 
and outer coil, respectively. The definition of B2

stray and 
more information about this problem can be found in [4]. 

In this problem, two constraint functions may cause dis-
continuities in the Pareto-front. Therefore, constraint han-
dling mechanism based on the concept of constrained-
domination in NSGA-II is also applied in this algorithm [5].  

The parameters in G-MOPSO and MGC-MOPSO are 
set up exactly same as in [2]. By using the FEM analysis to 
calculate two objective function and two constraint function 
values, the first trial solutions of G-MOPSO and MGC-
MOPSO are shown in Fig. 2. As the results, G-MOPSO has 
a better distribution at the extreme solutions but MGC-
MOPSO has a better distribution where the f1 and f2 are 
both minimized without missing the extreme solutions.  

In the full version of this paper, the spacing matrix, 
general distribution and other parameters of solutions will 
be compared. Also the effectiveness and behavior of the 
proposed MGC-MOPSO will be discussed in detail. 
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Fig. 2. Pareto-front of G-MOPSO and MGC-MOPSO. 


